Differential embedding of the Lorenz attractor.
نویسندگان
چکیده
Ideally an embedding of an N -dimensional dynamical system is N -dimensional. Ideally, an embedding of a dynamical system with symmetry is symmetric. Ideally, the symmetry of the embedding is the same as the symmetry of the original system. This ideal often cannot be achieved. Differential embeddings of the Lorenz system, which possesses a twofold rotation symmetry, are not ideal. While the differential embedding technique happens to yield an embedding of the Lorenz attractor in three dimensions, it does not yield an embedding of the entire flow. An embedding of the flow requires at least four dimensions. The four dimensional embedding produces a flow restricted to a twisted three dimensional manifold in R4. This inversion symmetric three-manifold cannot be projected into any three dimensional Euclidean subspace without singularities.
منابع مشابه
Global topology from an embedding
An embedding of chaotic data into a suitable phase space creates a diffeomorphism of the original attractor with the reconstructed attractor. Although diffeomorphic, the original and reconstructed attractors may not be topologically equivalent. In a previous work, we showed how the original and reconstructed attractors can differ when the original is three-dimensional and of genus-one type. In ...
متن کاملThe Lorenz Attractor Exists – An Auto-Validated Proof
We present an algorithm for computing rigorous solutions to a large class of ordinary differential equations. The main algorithm is based on a partitioning process and the use of interval arithmetic with directed rounding. As an application, we prove that the Lorenz equations support a strange attractor, as conjectured by Edward Lorenz in 1963. This conjecture was recently listed by Steven Smal...
متن کاملAttractor Based Analysis of Centrally Cracked Plate Subjected to Chaotic Excitation
The presence of part-through cracks with limited length is one of the prevalent defects in the plate structures. Due to the slight effect of this type of damages on the frequency response of the plates, conventional vibration-based damage assessment could be a challenging task. In this study for the first time, a recently developed state-space method which is based on the chaotic excitation is ...
متن کاملNonsymmetric Lorenz Attractors from a Homoclinic Bifurcation
We consider a bifurcation of a flow in three dimensions from a double homoclinic connection to a fixed point satisfying a resonance condition between the eigenvalues. For correctly chosen parameters in the unfolding, we prove that there is a transitive attractor of Lorenz type. In particular we show the existence of a bifurcation to an attractor of Lorenz type which is semiorientable, i.e., ori...
متن کاملModel Based Method for Determining the Minimum Embedding Dimension from Solar Activity Chaotic Time Series
Predicting future behavior of chaotic time series system is a challenging area in the literature of nonlinear systems. The prediction's accuracy of chaotic time series is extremely dependent on the model and the learning algorithm. On the other hand the cyclic solar activity as one of the natural chaotic systems has significant effects on earth, climate, satellites and space missions. Several m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 81 6 Pt 2 شماره
صفحات -
تاریخ انتشار 2010